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What we will talk about
 



  

What we will talk about

 Isabelle with:
 

!  Elementary Forward Proofs

!  Tactic Proofs (“apply style”)

!  Proof Contexts and Structured Proof



  

The Syntactic Category <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>)    (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
  done <method>

– structured proofs:    
proof (<method>) … qed 
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Introduction to 

structured proofs in
Isabelle/HOL 

 



  

Simple Proof Commands (Recall)
! Simple (Backward) Proofs: 

– where <contextelem> declare elements of a 
proof context Γ (to be discussed further)

– where <proof> is just a call of a high-level 
proof method by(simp), by(auto), by(metis), 
by(arith) or the discharger sorry
(for the moment).

lemma  <thmname> :  
[ <contextelem>+ shows ]”<φ>”           
<proof>



  

How to Declare Structured Goals
(Recall)

! (Simple) Context Element Declarations are:

– fixed variables:     fix <x> [:: <τ#]

– assumptions:   assume [<thmname>:] „<φ>“

  and [<thmname>:] „<φ>“



  

How to Declare Structured Goals
! Recall from the Logical Framework:

                 

or
                A1  (…   (A⟹ ⟹ n  A⟹ n+1)...) 
or 
                A⟦ 1; …; An     A⟧ ⟹ n+1  
or theorem

    assumes A1   and …  and An

  shows An+1 
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Local Proof
Contexts



  

How to Declare Local Proof 
Contexts

! In contrast (Rich) Context Elements are:

– fixed variables:     fixes <x> [:: <τ#]

– assumptions:   assumes [<thmname>:] „<φ>“

– local definition:   defines <x> ≡ <t>

– reconsidering facts: notes a1=b1 … an=bn 

– intermed. results:    have [<thmname>:] „<φ>“<proof>



  

Local Proof Contexts (Recall)
! A number of commands in Isabelle/Pure are 

concerned with Proofs, i.e. the syntactic 
category <proof>.

! When starting a proof, Isabelle creates a
proof context which is:

Γ ⊢T φ    + additional information

! Commands transforming proof contexts are called 
methods (T remains fix)

! The command “done” closes a proof 



  

 
A means to denote 
Rich Proof Contexts:

Notepads 

 



  

How to Build “Rich Proof Contexts“
! A constructor for proof-contexts is:

notepad 

   begin

 { fix x

      assume r1: "(A x ⟹ B x) ⟹ C"

     assume r2: "A x ⟹ B x"

      have D sorry

   } print_statement this

   find_theorems C 
end



  

How to Build “Rich Proof Contexts“
A notepad has a local proof-state with environments for

– fixes

– assumptions

– bindings

– facts

– using

– cases

– ... and the final goal: shows
! notepads are the building blocks of structured

proofs and can be nested.
! a stack of notepad states (with fixes, assumptions, bindings ...)

can be seen as “the state of the Isar-engine”



  

How to Build “Rich Proof Contexts“
! A notepad has a local proof-state with environments for

– fixes

– assumptions (“facts”)    (inspect via thm) 

– bindings         (inspect via print_binds)

– using  (“a buffer for assms”)

– cases              (inspect via print_cases)

– ... and the final goal: shows
! notepads are the building blocks of structured

proofs and can be nested.
! a stack of notepad states (with fixes, assumptions, bindings ...) 

can be seen as “the state of the Isar-engine”



  

Demo V II

! use Some aspects of Isabelle/Isar;
! use Makarius.tar.gz



  

 
Fundamentals of

Structured Proofs
in Isabelle/Isar

 



  

Structured Proofs in <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>)    (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
  done <method>

– structured proofs:    
proof (<method>) … qed 



  

Structured Proofs
● the structured <proof> option

– proof (<initial method>) 
         <notepad> {next  <notepad>}* 
qed   [(<final method>)]

allows to declare a number 
of notepads (declaratively declared subproblems) 
that were

  MATCHED  

against the subgoals after <initial method>  



  

The Syntactic Category <proof>

● structured proofs (in detail):
   proof ((<method>) I  -)

    <notepad>
    {next    <notepad>}*   
   qed [ (<method>) ] 

● notepads:
           
       <rich ctxt element>* show “<φ#” <proof>



  

The Syntactic Category <proof>

● structured proofs:
– allow to declare sub-goals  declaratively 

(eased by pattern-matching and abbreviations) 
– subgoals were matched against the proof context 

(order irrelevant,  lifting over parameters and 
assumptions)

– allow for advanced notation
for matching constructs following 
induction and case distinction    

– can be nested
– extensible (see ITP2014: “Eisbach”)



  

Running Example 1

● Running Example: A compact proof for 
reverse_conc in Example Induction.thy might
look like this:

lemma reverse_conc: 
"reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
by (induct xs) (simp_all add: conc_empty conc_assoc)

Compact imperative, apply-style proof via by persuing 
induction and subsequent simplification on the resulting 
subgoals.



  

Running Example 2

● Running Example as simple structured proof:
lemma reverse_conc': 
            "reverse (conc xs ys) =  conc (reverse ys) (reverse xs)"
  proof (induct xs) (* *) 
      show "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
            by(simp add: conc_empty)
  next
      fix a xs
      assume A: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)" 
      show         "reverse (conc (Seq a xs) ys) = 
                         conc (reverse ys) (reverse (Seq a xs))"
            using A by(simp add: conc_assoc)
  qed



  

Running Example 2

● Running Example as simple structured proof:
 At position (* *) the output of the Isar-Engine is:
  

 1. reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)

 2. ⋀a xs.
       reverse (conc xs ys) = conc (reverse ys) (reverse xs) ⟹
       reverse (conc (Seq a xs) ys) = conc (reverse ys) (reverse (Seq a xs))

which is exactly matched by the re-declaration in the two notepads
separated by next. Redeclaration is a means both to increase readability
and portability (since this is formally checked text, the redundancy will 
not be a source of degrading correctness during development), but 
clearly redundancy may be unwanted blur. 
  By the way, the order of the notepads does not play a role:  



  

Running Example 2'

● Running Example as simple structured proof:
lemma reverse_conc'': 
            "reverse (conc xs ys) =  conc (reverse ys) (reverse xs)"
  proof (induct xs) (* *) 
      fix a xs
      assume A: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)" 
      show      "reverse (conc (Seq a xs) ys) = 
                      conc (reverse ys) (reverse (Seq a xs))"
            using A by(simp add: conc_assoc)
  next
      show "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
            by(simp add: conc_empty)
  qed



  

Running Example 3

● Running Example as structured proof with 
abbreviations (declared by matching):
lemma reverse_conc''': 
            "reverse (conc xs ys) =  conc (reverse ys) (reverse xs)"
             (is "?lhs xs = ?rhs xs ")
  proof (induct xs) print_binds
      show "?lhs Empty = ?rhs Empty"
            by(simp add: conc_empty)
next
      fix a xs
      assume A:"?lhs xs = ?rhs xs" show "?lhs(Seq a xs) = ?rhs(Seq a xs)"
            using A by(simp add: conc_assoc) 
  qed



  

Running Example 3

● Running Example as simple structured proof:
 At position print_binds the output of the Isar-Engine is:  

 term bindings:
  ?lhs ≡ λa. reverse (conc a ys)
  ?rhs ≡ λa. conc (reverse ys) (reverse a)
  ?thesis ≡ reverse (conc xs ys) = conc (reverse ys) (reverse xs)

which shows the two schema-variables ?lhs and ?rhs defined by
HO-Unification and, by the way, explains what ?thesis is:
the schema-variable that is by default matched against the conclusion 
of the goal.

As one can see, these bindings may be reused in the re-declarations 
and can reduce blur dramatically. If carefully used, this can increase the 
understanding of the proof substantially.



  

Running Example 4

● Running Example as cases structured proof:

lemma reverse_conc': 
            "reverse (conc xs ys) =  conc (reverse ys) (reverse xs)"
  proof (induct xs) print_cases 
      case Empty show "?case" by(simp add: conc_empty)
  next
      case (Seq a xs) from Seq.hyps show "?case"
               by(simp add: conc_assoc)
  qed



  

Running Example 4

● Running Example as simple structured proof:
 At position print_cases the output of the Isar-Engine is:  

 cases:
  Empty:
    let "?case" = "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
  Seq:
    fix a_ xs_
    let "?case" = "reverse (conc (Seq a_ xs_) ys) =
                             conc (reverse ys) (reverse (Seq a_ xs_))"
    assume "Seq.hyps":"reverse(conc xs_ ys)=conc (reverse ys)(reverse xs_)"
      and "Seq.prems" :

● This is an environment of environments, that modify the bindings and 
assumptions accordingly. A sub-environment is activated with the case 
switch, the outer syntax for case-selectors may be parameterized by
arguments that instantiate the fixes of that case.   



  

Running Example 4
● Note that this setup in the cases-environment of the Isar-Engine

is an effect of the init-method, in our case (induct xs).

A few methods influence the case-environment:

– induct (but not the older: induct_tac)
– cases (but not the older: case_tac)
– ...   



  

Running Example 5 ...
● Note that 

case (Seq a xs) show "?case" using Seq.hyps 
               by(simp add: conc_assoc)

● is equivalent to:

case (Seq a xs) from Seq.hyps show "?case"
               by(simp add: conc_assoc)

is equivalent to:

case (Seq a xs) from `reverse (conc xs ys) = 
                                   conc (reverse ys) (reverse xs)` 
show "?case"  by(simp add: conc_assoc)

where `<pattern>` allows explicit search of an assumption in the local 
proof context; all these variants offer different proof abstraction levels. 



  

Demo V III

! use Some aspects of Isabelle/Isar;
! use Makarius.tar.gz, Compilation.thy
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