

Isabelle Tutorial:
System, HOL and Proofs

 Burkhart Wolff
(with contributions by Makarius Wenzel)

Université Paris-Sud

What we will talk about

What we will talk about

 Isabelle with:

! Elementary Forward Proofs

! Tactic Proofs (“apply style”)

! Proof Contexts and Structured Proof

The Syntactic Category <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

The Syntactic Category <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

Introduction to

structured proofs in
Isabelle/HOL

Simple Proof Commands (Recall)
! Simple (Backward) Proofs:

– where <contextelem> declare elements of a
proof context Γ (to be discussed further)

– where <proof> is just a call of a high-level
proof method by(simp), by(auto), by(metis),
by(arith) or the discharger sorry
(for the moment).

lemma <thmname> :
[<contextelem>+ shows]”<φ>”
<proof>

How to Declare Structured Goals
(Recall)

! (Simple) Context Element Declarations are:

– fixed variables: fix <x> [:: <τ#]

– assumptions: assume [<thmname>:] „<φ>“

 and [<thmname>:] „<φ>“

How to Declare Structured Goals
! Recall from the Logical Framework:

or
 A1 (… (A⟹ ⟹ n A⟹ n+1)...)
or
 A⟦ 1; …; An A⟧ ⟹ n+1
or theorem

 assumes A1 and … and An

 shows An+1

How to Declare Structured Goals
! Recall from the Logical Framework:

or
 A1 (… (A⟹ ⟹ n A⟹ n+1)...)
or
 A⟦ 1; …; An A⟧ ⟹ n+1
or theorem

 assumes A1 and … and An

 shows An+1

Local Proof
Contexts

How to Declare Local Proof
Contexts

! In contrast (Rich) Context Elements are:

– fixed variables: fixes <x> [:: <τ#]

– assumptions: assumes [<thmname>:] „<φ>“

– local definition: defines <x> ≡ <t>

– reconsidering facts: notes a1=b1 … an=bn

– intermed. results: have [<thmname>:] „<φ>“<proof>

Local Proof Contexts (Recall)
! A number of commands in Isabelle/Pure are

concerned with Proofs, i.e. the syntactic
category <proof>.

! When starting a proof, Isabelle creates a
proof context which is:

Γ ⊢T φ + additional information

! Commands transforming proof contexts are called
methods (T remains fix)

! The command “done” closes a proof

A means to denote
Rich Proof Contexts:

Notepads

How to Build “Rich Proof Contexts“
! A constructor for proof-contexts is:

notepad

 begin

 { fix x

 assume r1: "(A x ⟹ B x) ⟹ C"

 assume r2: "A x ⟹ B x"

 have D sorry

 } print_statement this

 find_theorems C
end

How to Build “Rich Proof Contexts“
A notepad has a local proof-state with environments for

– fixes

– assumptions

– bindings

– facts

– using

– cases

– ... and the final goal: shows
! notepads are the building blocks of structured

proofs and can be nested.
! a stack of notepad states (with fixes, assumptions, bindings ...)

can be seen as “the state of the Isar-engine”

How to Build “Rich Proof Contexts“
! A notepad has a local proof-state with environments for

– fixes

– assumptions (“facts”) (inspect via thm)

– bindings (inspect via print_binds)

– using (“a buffer for assms”)

– cases (inspect via print_cases)

– ... and the final goal: shows
! notepads are the building blocks of structured

proofs and can be nested.
! a stack of notepad states (with fixes, assumptions, bindings ...)

can be seen as “the state of the Isar-engine”

Demo V II

! use Some aspects of Isabelle/Isar;
! use Makarius.tar.gz

Fundamentals of

Structured Proofs
in Isabelle/Isar

Structured Proofs in <proof>

● Notations for proofs so far:
– ellipses:

 sorry, oops
– “one-liners” simp and auto:

 by(<method>) (abbrev: apply(...) done)
– “apply-style proofs”, backward-proofs:

 apply(<method>) … apply(<method>)
 done <method>

– structured proofs:
proof (<method>) … qed

Structured Proofs
● the structured <proof> option

– proof (<initial method>)
 <notepad> {next <notepad>}*
qed [(<final method>)]

allows to declare a number
of notepads (declaratively declared subproblems)
that were

 MATCHED

against the subgoals after <initial method>

The Syntactic Category <proof>

● structured proofs (in detail):
 proof ((<method>) I -)

 <notepad>
 {next <notepad>}*
 qed [(<method>)]

● notepads:

 <rich ctxt element>* show “<φ#” <proof>

The Syntactic Category <proof>

● structured proofs:
– allow to declare sub-goals declaratively

(eased by pattern-matching and abbreviations)
– subgoals were matched against the proof context

(order irrelevant, lifting over parameters and
assumptions)

– allow for advanced notation
for matching constructs following
induction and case distinction

– can be nested
– extensible (see ITP2014: “Eisbach”)

Running Example 1

● Running Example: A compact proof for
reverse_conc in Example Induction.thy might
look like this:

lemma reverse_conc:
"reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
by (induct xs) (simp_all add: conc_empty conc_assoc)

Compact imperative, apply-style proof via by persuing
induction and subsequent simplification on the resulting
subgoals.

Running Example 2

● Running Example as simple structured proof:
lemma reverse_conc':
 "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 proof (induct xs) (* *)
 show "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
 by(simp add: conc_empty)
 next
 fix a xs
 assume A: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 show "reverse (conc (Seq a xs) ys) =
 conc (reverse ys) (reverse (Seq a xs))"
 using A by(simp add: conc_assoc)
 qed

Running Example 2

● Running Example as simple structured proof:
 At position (* *) the output of the Isar-Engine is:

 1. reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)

 2. ⋀a xs.
 reverse (conc xs ys) = conc (reverse ys) (reverse xs) ⟹
 reverse (conc (Seq a xs) ys) = conc (reverse ys) (reverse (Seq a xs))

which is exactly matched by the re-declaration in the two notepads
separated by next. Redeclaration is a means both to increase readability
and portability (since this is formally checked text, the redundancy will
not be a source of degrading correctness during development), but
clearly redundancy may be unwanted blur.
 By the way, the order of the notepads does not play a role:

Running Example 2'

● Running Example as simple structured proof:
lemma reverse_conc'':
 "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 proof (induct xs) (* *)
 fix a xs
 assume A: "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 show "reverse (conc (Seq a xs) ys) =
 conc (reverse ys) (reverse (Seq a xs))"
 using A by(simp add: conc_assoc)
 next
 show "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
 by(simp add: conc_empty)
 qed

Running Example 3

● Running Example as structured proof with
abbreviations (declared by matching):
lemma reverse_conc''':
 "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 (is "?lhs xs = ?rhs xs ")
 proof (induct xs) print_binds
 show "?lhs Empty = ?rhs Empty"
 by(simp add: conc_empty)
next
 fix a xs
 assume A:"?lhs xs = ?rhs xs" show "?lhs(Seq a xs) = ?rhs(Seq a xs)"
 using A by(simp add: conc_assoc)
 qed

Running Example 3

● Running Example as simple structured proof:
 At position print_binds the output of the Isar-Engine is:

 term bindings:
 ?lhs ≡ λa. reverse (conc a ys)
 ?rhs ≡ λa. conc (reverse ys) (reverse a)
 ?thesis ≡ reverse (conc xs ys) = conc (reverse ys) (reverse xs)

which shows the two schema-variables ?lhs and ?rhs defined by
HO-Unification and, by the way, explains what ?thesis is:
the schema-variable that is by default matched against the conclusion
of the goal.

As one can see, these bindings may be reused in the re-declarations
and can reduce blur dramatically. If carefully used, this can increase the
understanding of the proof substantially.

Running Example 4

● Running Example as cases structured proof:

lemma reverse_conc':
 "reverse (conc xs ys) = conc (reverse ys) (reverse xs)"
 proof (induct xs) print_cases
 case Empty show "?case" by(simp add: conc_empty)
 next
 case (Seq a xs) from Seq.hyps show "?case"
 by(simp add: conc_assoc)
 qed

Running Example 4

● Running Example as simple structured proof:
 At position print_cases the output of the Isar-Engine is:

 cases:
 Empty:
 let "?case" = "reverse (conc Empty ys) = conc (reverse ys) (reverse Empty)"
 Seq:
 fix a_ xs_
 let "?case" = "reverse (conc (Seq a_ xs_) ys) =
 conc (reverse ys) (reverse (Seq a_ xs_))"
 assume "Seq.hyps":"reverse(conc xs_ ys)=conc (reverse ys)(reverse xs_)"
 and "Seq.prems" :

● This is an environment of environments, that modify the bindings and
assumptions accordingly. A sub-environment is activated with the case
switch, the outer syntax for case-selectors may be parameterized by
arguments that instantiate the fixes of that case.

Running Example 4
● Note that this setup in the cases-environment of the Isar-Engine

is an effect of the init-method, in our case (induct xs).

A few methods influence the case-environment:

– induct (but not the older: induct_tac)
– cases (but not the older: case_tac)
– ...

Running Example 5 ...
● Note that

case (Seq a xs) show "?case" using Seq.hyps
 by(simp add: conc_assoc)

● is equivalent to:

case (Seq a xs) from Seq.hyps show "?case"
 by(simp add: conc_assoc)

is equivalent to:

case (Seq a xs) from `reverse (conc xs ys) =
 conc (reverse ys) (reverse xs)`
show "?case" by(simp add: conc_assoc)

where `<pattern>` allows explicit search of an assumption in the local
proof context; all these variants offer different proof abstraction levels.

Demo V III

! use Some aspects of Isabelle/Isar;
! use Makarius.tar.gz, Compilation.thy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

